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ABSTRACT

Solar flares result from the rapid conversion of stored magnetic energy within the Sun’s corona. These

energy releases are associated with coronal magnetic loops, which are rooted in dense photospheric

plasma and are passively transported by surface advection. Their emissions cover a wide range of

wavelengths, with soft X-rays being the primary diagnostic for the past fifty years. Despite the efforts

of multiple authors, we are still far from a complete theory, capable of explaining the observed statistical

and individual properties of flares. Here, we exploit the availability of stable and long-term soft x-ray

measurements from NASA’s GOES mission to build a new solar flare catalogue, with a novel approach

to linking sympathetic events. Furthermore, for the most energetic events since 2010, we have also

provided a method to identify the origin of the observed flare and eventual link to the photospheric

active region by exploiting the array of instruments onboard NASA’s Solar Dynamic Observatory.

Our catalogue provides a robust resource for studying space weather events and training machine

learning models to develop a reliable early warning system for the onset of eruptive events in the solar

atmosphere.

Keywords: Catalogs (205); Astronomical methods (1043); Solar Physics (1476); Solar flares (1496),

Solar x-ray flares (1816)

1. INTRODUCTION

It is well known that space weather events such as

solar flares, coronal mass ejections (CMEs), and solar

energetic particle (SEP) emissions, pose a significant

threat to human infrastructures both on Earth and in

space (e.g. MacAlester & Murtagh 2014; Berrilli et al.

2014; Di Fino et al. 2014; Oughton et al. 2017). Hence,

understanding and predicting the hazards linked to the

Sun’s magnetic activity have grown in importance over

the years. In the last decade, a plethora of authors have

trained different machine learning models to forecast the

likelihood that the Sun will produce a flare in a precise
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time frame, usually ranging from a few hours to 1-2 days

(Schrijver 2007; Qahwaji & Colak 2007; Yu et al. 2010;

Li 2011; Bobra & Couvidat 2015; Barnes et al. 2016;

Jonas et al. 2016; Huang et al. 2018; Park et al. 2018;

Leka et al. 2019; Nishizuka et al. 2021; Deng et al. 2021;

Cicogna et al. 2021; Pandey et al. 2023, to name a few).

For an extensive analysis of the challenges of machine

learning applied to space weather and the prediction of

the occurrence of solar flares, we refer the reader to the

review work of Camporeale (2019).

A complete data set is crucial for enhancing the per-

formance of machine learning models while also miti-

gating biases and optimising computational efficiency,

as discussed in Mehrabi et al. (2021). Traditionally,

many works on flare forecasting are based on the flare
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Figure 1. (a) Application of the flare detection algorithm to GOES X-ray data from 9 March 2015. The violet dashed
rectangle highlights two homologous events correctly detected by the algorithm, while the magnified inset shows the difficulty
of flare detection due to noise-induced fluctuations. Orange stars mark the flare peaks detected by our algorithm, while pink
ones highlight those identified in both the NOAA catalogue and our own. Orange-shaded areas denote the duration of the
corresponding flare. (b) Reconstructed butterfly diagram using solar flares, showing the latitudinal spread of flare occurrences
over different solar cycles. (c) Spatial distribution of flares on the solar disk, with flare types represented by colour. Stray values
are due to oversaturated AIA images.

catalogue provided by the NOAA1, a live service that

has provided flare events since January 2002 with the

launch of the GOES-08 satellite. However, while the

NOAA catalogue remains the primary reference for flar-

ing events, standard flare identification methods can

miss some events and fail to provide further insights into

the more complex processes linking flares to the global-

scale dynamics of the solar magnetic field. Alternative

catalogues have been proposed, often relying on differ-

ent detection algorithms or instruments.

In Aschwanden & Freeland (2012) the authors conduct

a comprehensive analysis of solar flare activity spanning

37 years (1975-2011). Using an automated flare detec-

tion algorithm applied to soft X-ray data from GOES

satellites, they identified and catalogued over 300,000

solar flare events. From now on, we will refer to this

catalogue as ASC.

In van der Sande et al. (2022), the authors present a

solar flare catalogue based on EUV images from the At-

mospheric Imaging Assembly (AIA, Lemen et al. 2012)

onboard the Solar Dynamics Observatory (SDO, Pes-

1 ftp://ftp.swpc.noaa.gov/pub/warehouse/

nell et al. 2012). This approach increases the number

of recorded events and improves the characterisation of

the total energy released. However, its applicability is

limited by the relatively short operational window of the

SDO mission compared to GOES, restricting statistical

studies across multiple solar cycles.

In Plutino et al. (2023), which has been referred to as
the PLU catalogue from here on, the authors propose an

alternative flare identification algorithm to detect events

in the GOES X-ray signal. Instead of relying on the ra-

tio between the background and the peak fluxes, their

approach defines a true event based on an instrumental

threshold, leading to a higher number of detected flares.

In this work, we present a new solar flare catalogue

based on soft X-ray measurements from GOES and

named Archival Solar flaRes (ASR) catalogue. We re-

fine many of the events already recorded by both NOAA

and PLU and employ a novel approach to identify and

connect both sympathetic flares and homologous flares.

This analysis allows us to investigate statistical relation-

ships between distant flaring regions and explore the

global properties of these energetic solar events. Thanks

to the availability of stable and long-term X-ray mea-

ftp://ftp.swpc.noaa.gov/pub/warehouse/


3

surements, we are able to cover two full solar cycles,

and, for the most recent one, we also provide the origin

point of the most intense events. Our catalogue serves

as a valuable resource for both space weather studies

and machine learning applications. Indeed, thanks to a

versatile and complete data set, we can support the de-

velopment of more reliable flare prediction models and

early warning systems for potentially disruptive solar

activity.

2. DATASET

The Geostationary Operational Environmental Satel-

lites (GOES), first launched in 1974 with GOES-

1 and currently active with GOES-16/17/18, is a

NASA/NOAA mission focused on monitoring both

Earth and solar activity. Regarding the Sun observation

side of the mission, the satellites are equipped with two

X-ray sensors (XRS), one measuring radiation between

0.5 and 4 Å (short channel) and the other between 1

and 8 Å (long channel). See Hanser & Sellers (1996) for

an introduction to GOES XRS. In this work, we consid-

ered the 1-minute averaged science-quality X-ray signal

of the long channel of the primary satellite from Jan-

uary 1, 2002, to December 31, 2024. The science qual-

ity data, provided directly by the NOAA science team,

is thoroughly processed and includes several corrections

with respect to the operational data, including those

for SWPC (Space Weather Prediction Centre) scaling

factors, XRS-A bandpass, time stamps, temperature ef-

fects, better quality flags, and other issues. Specific in-

formation on the available data for each satellite and

which to consider for a specific time range can be found

in the extensive guide provided by the NOAA in the ded-

icated XRS Web portal2. In general, when two or more

satellites are actively collecting data at the same time,

one of them is indicated as the primary source, while

the other is indicated as the secondary one. Finally, the

downloader function of the ASR catalogue code provides

yearly datasets containing the 1-minute averaged time

series of the soft x-ray flux along with the quality flag,

the data source, and the time stamp in plain text for-

mat. With this approach, our method differs from the

previous ASC and PLU catalogues, which use the GOES

operational data, characterised by a temporal resolution

ranging between 1 and 4 seconds later averaged to 12

seconds and with an additional smoothing window ap-

plied.

For the most energetic events, we are able to deter-

mine the origin point of the solar eruption thanks to

2 https://www.ngdc.noaa.gov/stp/satellite/goes-r.html

the availability of stable, seeing-free, and continuous im-

ages of the solar corona captured by the AIA onboard

SDO. To determine the location of solar flares identified

through our GOES X-ray analysis, we chose to utilise

images from Fe ix 17.1 nm spectral line, corresponding

to images of the lower quiet corona to provide a reli-

able picture of the coronal magnetic fields, with little

interference from other transient events such as shocks

(Van der Sande et al. (2022)). Here, we estimated the

position of 138 X-class flares, 1735 M-class flares and

1958 C-class flares, for a total of 3831 events.

3. METHODS

The ASR catalogue code consists of a significant im-

provement over the previous PLU flare catalogue, with

several of the same authors contributing to both works.

Although many of the novel features of the former cat-

alogue have been inherited, such as accounting for sym-

pathetic/homologous events and computing each flare’s

flux integral, the ASR catalogue further offers many im-

provements. In this section, we will thoroughly review

the various steps involved in the identification, defini-

tion, and characterisation of flares in our catalogue.

3.1. Flare Identification

The first step in building the flare catalogue consists

of identifying maxima and minima in the yearly GOES

time series. To this end, we exploited the “argrelex-

trema” function of the SciPy library (Virtanen et al.

(2020)). For each sampled point, the function checks its

nearest neighbours; if both values are larger or smaller

than the considered point, then it is classified as a rel-

ative minimum or maximum, respectively. The index

of the detected extreme is then recorded in a “pandas

dataframe” data structure and saved as a separate CSV

(Comma-Separated Values) file. A drawback of this ap-

proach is the loss of flat extremes, that is extremes char-

acterised by a series of the same value. However, such

situations are not commonly found in the soft X-ray sig-

nal and are mainly associated with instrumental satura-

tion. Hence, saturated events are handled by replacing

the flat region in the measured GOES X-ray signal with

a second-degree polynomial fitted by overestimating the

peak by 2.5% in the centre of the saturated region and

adjusting the edges. It is worth noting that, in the 22

years covered by the whole catalogue, instrumental sat-

uration occurred only once, during the famous storm of

October 2003.

Due to the inherently noisy nature of the GOES signal,

even in the softer long channel and 1-minute averaged

science-quality data, we need to account for the presence

of consecutive extrema. These neighbouring extrema are

https://www.ngdc.noaa.gov/stp/satellite/goes-r.html
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Figure 2. Probability density functions of the estimated
flux integral, also known as fluence, (top) and peak flux (bot-
tom) for the GOES catalogue and the ASR catalogue, in
orange and violet, respectively. The dashed black lines high-
light the range used for the linear fit to estimate the slope
of the distributions. In the top panel, this range spans from
3 · 10−5 to 10−2 W/m2 , and the fitted slopes are −2.1± 0.1
and −1.9±0.01 respectively for the ASR and GOES ones. In
the bottom panel, it extends from 3 · 10−6 to 2 · 10−4 W/m2,
and the estimated slopes are −2.3 ± 0.01 for the ASR cata-
logue and −2.1± 0.01 for the GOES one.

rarely associated with true flare events, which are gener-

ally characterised by a sharp increase in flux followed by

a slower energy decay. Thus, considering these extrema

as events would lead to the presence of false flares, com-

promising the statistics and goodness of the catalogue.

In our code, this is taken into account by checking the

indexes of the extrema: if three consecutive ones are de-

tected, the first two are dropped. We point out that this

might lead to an offset in either the flare start, end, or

peak time of no more than two minutes.

3.2. Flare Definition

Once the relative extrema of the entire GOES time se-

ries are identified, we check how many of these events are

true flares and not noise-driven fluctuations. Over the

years, various definitions have been proposed to reliably

identify solar flares in the GOES signal. The NOAA cat-

alogue defines a flare using three criteria: 1) the event

starts where four consecutive points increase monotoni-

cally and exceed 10−7 W/m2; 2) the flux ratio between

the first (start) and fourth (peak) points is greater than

1.4; 3) the end time of the flare is defined as the point in

time successive to the flare peak where the flux is half

that observed at the peak.

In our catalogue, we adopt the same flare definition

as in PLU. Each minimum represents a potential flare

start, while the following maximum represents the possi-

ble flare peak. A provisional flare event is classified as a

true flare if the flux at the peak exceeds the background

flux, i.e. the averaged flux two minutes prior to the min-

imum, by a threshold equal to 2 · 10−8 W/m2. Properly

estimating the flux background can greatly improve the

detection of weaker events and the estimation of their

energy. The threshold value, related to the intrinsic sen-

sibility of the XRS instrument, defines the noise floor

for typical GOES flux measurements, established during

quiescent periods of solar activity (e.g., Aschwanden &

Freeland 2012). Accurately estimating the background

flux is crucial. Indeed, this flux can be considered as

the superposition of the contributions coming from the

active region where the flare originates, as well as the

integrated flux coming from the entire solar disk (in-

cluding beyond the visible limb).

We define the end time of an event either as the time

successive to the peak where the flux value returns to the

background value plus the threshold value, or the point

when a new true event starts. The choice between the

two falls to whichever occurs first. In the former case, a

unique label is assigned to the flare. In the latter case,

that is, in case of consecutive true flare events, a shared

label is assigned to the group of events, allowing direct

identification of homologous or sympathetic events.

3.3. Flare Characterisation

In addition to the start, peak, and end times and their

associated flux values, our catalogue offers other proper-

ties related to the flare that can be used to characterise

each event. The integrated flux of each flare is computed

as the integral, using the trapezoidal rule, of the flux val-

ues between the start and end times. This information
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is critical to understand the energy released during the

entire flare event. We also provide a corrected integrated

flux value that corresponds to the difference between the

integrated and background fluxes. This quantity takes

into account the background solar activity and offers in-

sight into the ”rescaled” energy released.

To further compare our catalogue with the one re-

leased by the NOAA, we also provide the classifica-

tion of flares according to the NOAA standard proce-

dure. Indeed, flares are traditionally divided into five

classes depending on the intensity of the peak emission

in the soft X-ray signal, starting from the weakest A-

class flares, with peak flux emissions between 10−8 and

10−7 W/m2 up to X-class flares with peak emissions over

10−4 W/m2. Similarly to the flux integral, we provide

two different class definitions for any flare event. The

traditional class is determined similarly to the NOAA

catalogue by considering the peak flux of the flare event.

We then introduce a relative flare class that is estimated

by rescaling the event peak flux to the background flux

(referred to as delta flux from here on), so that it is not

biased by the solar activity cycle. A detailed description

of the estimated background is provided in Appendix A.

For the sake of clarity, from now on we will refer to the

catalogue which uses the traditional class definition as

the ASR catalogue and to the one using the relative class

definition as the ASRREL catalogue.

Finally, to align with the NOAA procedure and enable

further refinement of observed flaring events, we also

include the ratio between peak and background flux.

Adjusting the filters in our catalogue makes it easy to

reconstruct the NOAA one.

3.4. Flare Location

For the most energetic events, that is, those with a

delta flux greater than 5 · 10−6 W/m2, we estimate the

point of origin of the flare. To determine the position of

a given event, we consider the barycentre of the bright-

est cluster of pixels in the difference AIA Fe ix 17.1 nm

channel image between the peak and start of the flare.

Moreover, as we consider only the largest and brightest

cluster of pixels, we can safely assume that other en-

ergetic events in the solar atmosphere, such as weaker

flares and shocks, can be neglected and do not risk affect-

ing the flare localisation process. The flare location is

then provided in pixel, helioprojective, and heliographic

coordinates to allow for a straightforward connection to

the corresponding active region.

4. RESULTS AND DISCUSSION

The total number of flares detected by our algorithm

as a function of the flare class is shown in Table 1. In

Table 1. Summary of the flare statistics for the NOAA,
Plutino and ASR catalogues divided by class up to the year
2022.

Class GOES PLU ASR ASRREL

A 2690 2800 5077 147696

B 15980 88005 118384 93963

C4- 8543 68980 125051 17248

C5+ 1564 4807 10352 2698

M 1581 2803 5189 2490

X 159 187 274 232

particular, the first, second, and third columns refer to

the number of flares identified by the NOAA, PLU, and

ASR catalogues, respectively. Instead, the fourth col-

umn reports the number of flares per class after account-

ing for the background flux, based on a “relative” flux

value obtained by subtracting the background flux from

the peak one. We wish to stress that the background

we intended here is related to the magnetic activity of

the Sun and is not related to the background given by

other galactic sources, which is already removed in the

science-quality data provided by NOAA. The number

of flares in our catalogue is consistently higher with re-

spect to the NOAA one in each class. These differences,

especially in the lower energy classes, stem from the rad-

ically different detection method used in our work, which

is based on an instrumental threshold and does not re-

quire a specific ratio between the flux measured at the

start and peak points. The increase in flares in the M

and X classes can also be attributed to our definition

of a flare. In fact, secondary peaks in the tail of M- or

X-class events may also be classified with a similar class.

Table 1 also shows that the number of flares identified in

our catalogue is also greater than that presented in PLU.

Although the identification and definition processes are

the same, the main difference lies in the dataset used.

In fact, the former uses the operational data provided

by GOES, which requires further processing. We also

observe that the relative class attribution, which takes

into account the background solar activity, drastically

changes the distribution of flares, especially at lower en-

ergies. In fact, most of the standard flares populating

the B and C classes are shifted to a lower-energy class in

the adjusted flux integral scenario. The X and M classes

are instead less affected by the flux rescaling, meaning

that most of the large events, which are generally ob-

served during high solar activity, largely overshoot the

background-level flux.

It is worth pointing out that the number of flare events

for a catalogue is not a significant proxy of its quality.

Indeed, this number is mainly related to the flare event



6 Berretti & Mestici et al.

definition, which can be quite arbitrary. Here, we aimed

to provide the most general and versatile definition of

a flare, leaving the users the possibility and freedom to

decide which events to consider and which not. Further-

more, the grouping of homologous and/or sympathetic

events under the same id offers the opportunity to con-

sider these events as a single longer event or multiple

separated ones. We wish to stress yet again that the

novelty and strength of this work lies in its versatility,

making it easily adaptable to many different tasks.

In panel a) of Fig.1 we show the detection algorithm

process for a particularly challenging case study. We

selected the GOES X-ray signal from 9 March 2015,

during the peak of solar activity of the 24th cycle, be-

tween 09:00 and 11:00 UTC, due to its complex features,

which our algorithm successfully handled. The continu-

ous black line is the 1-minute average of the soft X-ray

flux in the long channel, and the star points represent

the flare peaks. In particular, the pink stars highlight

events that are identified both in the NOAA and ASR

catalogues, whereas the orange ones are unique to our

catalogue. The shaded regions mark the time of the

identified flare events, and the dashed vertical line is the

starting point. In the violet dashed box, we show that

the algorithm successfully links two homologous events,

as the second one starts before the first can return to pre-

flare flux levels. The zoomed-inset provides an example

of three consecutive extrema, which were identified as

provisional maxima and minima. As explained previ-

ously, depending on the order of the sequence, this case

may lead to a shift up to 2 minutes of the flare peak.

In this case, the flare peak is attributed to the second

maximum of the sequence.

The b) and c) panels of Fig. 1 present two statisti-

cal properties of our catalogue. In panel b), we show

the distribution of solar flares across the Sun’s surface

throughout the period covered by our catalogue. Simi-

larly to sunspot behaviour, flares initially appear at mid-

latitudes and migrate towards the equator as the solar

cycle progresses. This pattern resembles the well-known

butterfly diagram for sunspots (e.g. Cloutier et al. 2024),

but our analysis includes the positions of thousands of

flares. The occurrence rate and the spatial distribution

of flare events on the disk are correlated to solar activ-

ity, with higher latitudes seeing more flares when solar

activity is higher. The solar activity minimum of the

24th solar cycle between 2018-2020 is also evident, as

almost no intense flare events are observed.

We display the flare spatial distribution across the entire

solar disk in panel c). Flares that belong to the M, C,

and X standard classes are indicated by orange squares,

pink crosses, and violet dots, respectively. Few stray

values, which differ from the majority of the dataset

constrained to mid-latitudes, are the result of the over-

saturated AIA images.

The probability density distribution of the flux inte-

gral and the peak flux for the ASR and NOAA cata-

logues are shown in Fig. 2. The shapes of the distribu-

tions associated with the two datasets clearly differ at

low energies. The flux integral distribution of the NOAA

catalogue has a first peak around 10−8 W/m2, followed

by a minimum at 5 · 10−7 W/m2 and another maximum

at ∼ 10−6 W/m2. As XRS detection is effective for

fluxes greater than 10−8 W / m2, it could be argued

that the first peak is driven purely by noise. Instead,

the ASR probability distribution increases exponentially

from lower energies to a peak around ∼ 10−6 W/m2.

This more ”consistent” behaviour can be attributed to

the effectiveness of the algorithm in identifying true

flare events while discarding noise-driven fluctuations.

At higher energies, both distributions are characterised

by a similar exponential decay, covering more than two

decades in energy. The dashed lines in Fig. 2 show the

range in which we performed a linear fit of the distri-

butions in the log-log space. The slopes associated with

the two distributions are -2.1±0.1 and -1.9±0.1 for the

ASR and NOAA catalogues, respectively. Our results

are consistent with not only NOAA, but also with pre-

vious observations (ASC, PLU, Veronig et al. 2002a,b;

Yashiro et al. 2006) and the scaling index of the frac-

tal diffusive self-organised criticality (FD-SOC) model

described in ASC and Aschwanden (2011).

Most of the points discussed for the flux integral dis-

tribution can also be applied to the peak flux distri-

bution shown in panel b) of Fig. 2. Once again, the

dashed lines are the linear fit of the distributions. The

associated slopes are -2.3±0.1 and -2.1±0.1, which are

consistent.

4.1. May 2024 case study

In this section, we present an in-depth focus on the

most intense space weather event of the last two decades

that occurred on 11-14 May 2024. The solar active re-

gions classified as AR13664 and AR13668 by the NOAA,

which eventually merged into a single one, produced a

series of geo-effective space weather events comprising

flares and fast CMEs. In the leftmost panel of Fig. 3,

we show the GOES X-Ray flux from May 11th, 2024

to May 14th, 2024, marking the peaks of the detected

flare in violet, pink, and orange, respectively, for C, M,

and X classes. According to the absolute class, i.e. the

standard NOAA definition for flare class, our algorithm

detected a total of 171 C-class flares, 53 M-class flares,

and 2 X-class flares. In the right panel of Fig. 3 we show
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Figure 3. In the left panel, we show the measured GOES X-ray signal from May 11, 2024 to May 14, 2024. The detected flares
are marked respectively in violet, pink, and orange diamonds for C, M and X class events. The right panel shows the positions
of the most energetic flares in the solar disk over a magnetogram captured by the Helioseismic and Magnetic Imager onboard
SDO on May 14, 2024. As expected, the majority of flares originated in a well-defined active region, while weaker flares are
scattered across the solar disk.

the position of the detected events on the solar disk. As

we can see, the majority of flares originated from active

regions 13664 and 13668 with a handful of less intense

events coming from the other side of the solar disk.

5. CONCLUSION

In this work, we presented the ASR catalogue, a novel

flare catalogue based on GOES soft X-ray measurements

that covers more than 20 years of observations. Based

on an already established detection algorithm, we im-

plemented significant changes to the identification algo-

rithm and offered additional properties related to the

flare, such as the point of origin of the most energetic

events. By exploiting the user-friendliness of Python,

we offer a robust and accessible alternative to already

existing catalogues. The ASR catalogue offers reliable

support for training machine learning models for space

weather forecasting and solar physics studies. Finally,

it is a live service that provides a daily bulletin of flares

in the past 24 hours.
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APPENDIX

A. BACKGROUND CHARACTERISATION

In Fig. 4 we show the observed flux background over the full temporal length of our dataset. The clear reproduction

of the solar activity cycle emphasises the importance of accounting for background variations when estimating the event

integral, ensuring an unbiased measure of flare energetics. The concentration of points at lower energies represents the

full scale of the instrument.
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Figure 4. Observed background flux over the entire duration of the dataset. The orange dashed line shows a seventh-degree
polynomial fit. For clarity, we included only one event out of every 30 to avoid overcrowding with overlapping flares.

B. DATA PRODUCT DESCRIPTION

The head of the ASR catalogue is organized in 13 columns. A full explanation for each tag is given in the paper,

here we provide a table with a brief description of each column.
Furthermore, the three catalogues that also report the position of the flare events (one for each class) have six

additional columns that accommodate the flares coordinates in different reference frames.
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Column Description

flare id Identificative number of a flare; not unique as consecutive flares share the same ID.

tstart Flare starting time in ISO8601 datetime format.

tpeak Flare peak time in ISO8601 datetime format.

tend Flare end time in ISO8601 datetime format.

BG flux Background flux computed over the two-minute interval before the event.

flux integral Flux integral of the flare event from tstart to tend.

ratio Ratio between background and peak fluxes.

flux int corrected Flux integral from tstart to tend, accounting for background flux.

delta flux Difference between peak flux and background flux.

fclass simple Flare class estimated based on delta flux, accounting for background flux.

fclass full Full class of the flare estimated as in fclass simple.

abs class simple Flare class estimated according to NOAA.

abs class full Full class of the flare estimated as in abs class simple.

Table 2. Description of the columns included in the flare catalogue.

Column Description

flare x Position of the flare in pixel coordinates

flare y Position of the flare in pixel coordinates

Lon [Helioprojective] Longitude of the flare in the helioprojective reference frame

Lat [Helioprojective] Longitude of the flare in the helioprojective reference frame

Lon [Heliographic] Longitude of the flare in the heliographic Stonyhurst reference frame

Lat [Heliographic] Longitude of the flare in the heliographic Stonyhurst reference frame

Table 3. Description of the additional columns included in the flare catalogues with the positions.
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